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ABSTRACT: Spontaneous emission, stimulated emission and absorption are t
fundamental radiative processes describingmigftér interactions. Here, we theoretic
study the behavior of these fundamental processes inside an unbounded medium
vanishingly small refractive index, i.e., a near-zero-index (NZI) host medium. We
generalized framework to study these processesldhdt the spatial dimension of the N
medium has profound exts on the nature of the fundamental radiative processe
formalism highlights the role of the number of available optical modes as well as thg
an emitter to couple to these modes as a function of the dimension and the class of
We demonstrate that the fundamental radiative processes are inhibited in 3D ho
lossless zero-index materials but may be strongly enhanced in a zero-index medium|
dimensionality. Oumdings have implications in thermal, nonlinear, and quantum op
well as in designing quantum metamaterials at optical or microwave frequencies.
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I n 1916 and 1917, Einstein proposed three fundamentaiedia):®and both and simultaneously approach zero (i.e.,
radiative processes to explain ligtatter interactions: epsilon-and-mu-near-zero (EMNZ) medfa).** *©
spontaneous emission, stimulated emission, and ab5drptiorAlthough all three classes of NZI media share a near-zero
Einsteits A,;, B,;, andB,, coe cients are typically used to refractive index, they dr critically in other characteristics.
describe the rate of these processes, respectively. Later, Purédll example, the normalized wave impedance
demonstrated that the spontaneous emission rate is not 20 ) = / ( )/ () tends to innity in ENZ media,
immutable property of matter and that the environment cag( ) , to zero in MNZ medi&Z( ,) 0, and to a
signi cantly modify i. In recent times, there are ongoing nite value in EMNZ media,
intensive researchoets in designing nanostructured materials
to control the spontaneous emission rates for applications in z( 2 [ (Y ()
guantum optics, quantum computing, quantum communica-
tions, and quantum chemi$tryMost notably, metamaterials, Similarly, the group indey( ) = dv( ), wherey( )isthe
arti cial materials that may exhibit electromagnetic (EMyroup velocity, tends to ity in ENgz and MNZgunbounded
properties otherwise absent in natural materials, have beggsless mediawhile it has anite value, n( ), in EMNZ
explored for that purpose due to their ultimateébility in  media®'* Consequently, the selected class of NZI medium
tailoring the local optical environment. These engineeraflakes a profound impact on edent optical processes,
materials may feature extreme parameters such as a near-zeifading propagation, scattering, and radiation of EM’waves.
refractive index (NZI) and have been shown to exhibit exotic Similarly, extreme material parameters impact fundamental
electromagnetic properties: radiative processes and their associated transition rates.
As a consequence of a vanishing refractive index at frequeSpgcically, complete inhibition of spontaneous emission was
2, the phase velocity of an EM wave inside a near-zero- predicted for three-dimensional (3D) ENZ and EMNZ
index material diverges and the wavelengtithe wave is
signi cantly stretched. Since the refractive indexnedias Received: May 12, 2020

n( )=y () () ,where( )isthe relative permittivity ~Published: July 15, 2020
and ( ) is the relative permeability, threeedént routes

exist to achieve an NZI responseapproaches zero with

arbitrary  (i.e., epsilon-near-zero (ENZ) medi&);

approaches zero with arbitrargi.e., mu-near-zero (MNZ)

z

o
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Figure 1.Spontaneous decay rate normalized with free-space (Purcell factor) for (a) 3D, (b) 2D, and (c) 1D homogeneous dispersive NZI media

We choose .= ksT/ = , where = 2.821439 is a constant afid= 300 K. EMNZ metamaterial with a Lorentz model
28 249 . . . .
(()=10()= % :=0.1 5, =0 for the lossless c&j¢yellow), ENZ material wit ) and =1 (blue), MNZ material with

( )and =2.25 (red). Inset of (a): two-level sysféen | g} embedded inside an unbounded, lossless, and homogeneous dispersive material.

media®*® and two-dimensional (2D) implementations of 2 2
EMNZ medid* Typically, the suppression of spontaneous Azi ) = —Cg|p|2 u Am[G(r, 1o )],
emission is jused due to the depletion of optical modes as 0

the refractive index goes to zero. Thécteis somewhat =R¢ ()n( ) Ay @
analogous to the inhibition of spontaneous emission in
photonic nanostructuresxhibiting a band g&f™® “** |\ here we have used

However, it is distinct in that the propagation of electro-
magnetic waves is allowed in EMNZ media. In contrast, studies _
of metallic waveguides near cutmt e ectively behave as Uz MG, To, )]-u;= H;Re L)
one-dimensional (1D) ENZ media reveal that the spontaneous
emission rate is enhanced (theoretically diverges) in thoéer homogeneous medfaandA,; = 3pf/(3 ©) is the
systems® 2° free-space spontaneous emissionciEre.

The radical dierence in the predicted responses, i.e., We directly conclude fromy 1that spontaneous emission is
inhibition versus enhancement, raises the question of whethefibited in all classes of unbounded lossless 3D NZI media as
these eects relate to details of the structural implementatiom( ) 0. Figure & shows the inhibition of spontaneous

of NZI media (e.g., microscopic coupling to a dispersivemission for the three classes and thedretit behaviors
waveguide) or if they are an accurate representation of the trgigyund the Nzl frequency.

material response of NZI media. The latter would then imply a Next  we study stimulated emission and absorption by

complex interplay between the class of NZI media (ENZgterring to the detailed balance equifiom. our case
MNZ, and EMNZ) and the dimensionality of the system (1D'detailed balance means that spontaneous emission and

2D, and 3D). stimulated emission are balanced by the absorption process.

To the best of our knowledge, there is nceghiramework : L . . . . !
encompassing studies of all the fundamental radiati\wls prlréglple leads to the Einstein relations for dispersive
6nater|al :

processes for all NZI media classes (ENZ, MNZ, an
EMNZ) and dimensionalities (1D, 2D, and 3D). Here, we

address this question by presenting adiframework that 21 - DOSx , Ba = k1

provides compact expressions for the transition rates in Ba: B, g (3)
dimension-dependent NZI media. Our results are relevant

for recent experimental demonstrations of various classeswdfere DOS #( ) % *Cyy ) is the density of states and

@)

NZI media:®*’ *° the degeneracy of stiteFrom here, one can derive a general
To begin, we consider a two-level system, expression for the Einstey, coe cient in a dispersive
. material:
(l&; 19}
2
, with transition dipole momept= pu, embedded in a 3D Bu( ) = — 2 ¢ |p|2uZ IM[G(ry, re, )]-U,

unbounded lossless homogeneous material with a transition ()
frequency . First, we evaluate the uence of an NZI

background on spontaneous emission, and then we discuss ﬂ 1

how these conclusions apply to the absorption and stimulated Ny )

emission processes. To this end, we follow the macroscopic @)
QED formalisft so that the Einstein coeient Ay,

representing the spontaneous emission rate, can be writtedJsing this formulation, we can evaluate the Eirstein

as a function of the GreefunctionG as follows? coe cient for the dierent classes of NZI media:
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By( = 2 the group index is constant, but the spectral energy density is
highly reduced in the NZI spectral region. For frequencies
below 5, the allowed propagation corresponds to propagation
=, _ inside a left-handed materials with a refractive index close to
T8 for EMNZ materials zero>>*® For ENZ and MNZ media, no propagation is allowed
d for frequencies below, because of the imaginary refractive
index. In general, sincgé , T) scales ag%( ) n( ), it is
reduced in the NZI spectral region and vanishes exagtly at
This eect can be intuitively explained by using a box
guantization treatment. The spectral energy density of thermal

for ENZ materials

R

for MNZ materials radiation ( ) is the product of the density of states (DOS)
(5) with the mean energy of a state at temperature
( ,T) = —=—2% The modes in a 3D box of volume

Equationg} and5 show that thd,; coe cient is modied e /TS 1
by the background medium, as pointed out in previouk® in k space are separated by= /L. Consequently, the
works?>*° This result suggests that the ratio betweernumber of modes in a spherical shell betwaedk + dkis
spontaneous and stimulated emission can be selected B§dK /L) 3 so that the density of modes scale¥(a$
changing the background material. However, one must Bg ).>* When the index is near zero, the number of modes
careful to point out that the stimulated emission rate is giveithin the sphere is much lower than that in vacuum and the

by the product d8,; and the spectral density of states T) DOS reachgs its m_inimum value. Therefore, the spectral
(si=Bx (,T)). In addition, in view afq 3 the absorption ~ energy density( , T) is equal to zero at the NZI frequency
rate must be equal to the stimulated emissiongate s 2, and, consequently, thermal radiation from a blackbody

Therefore, in order to elucidate the impact of NZI media oimmersed in such media would be inhibited.
the total stimulated emission and absorption rates, we addrest addition, by combininggs 5and 6 we nd that the
how the spectral energy density of thermal radigtiorT) stimulated emission rate vanishes. Therefore, although
behaves in the NZI limit. This procedure will also allow us t@revious works pointed out the possibility of controlling
study thermal equilibrium radiation for a blackbody astimulated emissidn,® we conclude that all fundamental
temperaturd immersed in NZI media. The spectral energyradiative processes are inhibited inside unbounded 3D
density of thermal radiation in a material is gi\Fén by homogeneous lossless NZI media, which can be understood

as a consequence of the depletion of optical modes around the

(. T) = _3 1 () ) NZI frequency._The same conclusion_ can be obtained .by

' 2B kT &1 ry (6) directly evaluating the stimulated emission and absorption
rates by means of Fesmjolden rul& without needing to

Figure Zepresents the spectral energy density (corresponiivoke the detailed balance equation or thermal equilibrium
ing to blackbody radiation) for the @lient classes of NZI considerations. Furthermore, we note that the inclusion of the
media. We set the zero-index frequendy be equal to the  local-eld correction factors using a real-cavity fatteds
frequency at which the spectral density in vacuum is maximunet change the above conclusiddispporting Information

nax= ksT/ , where = 2.82143§’ In EMNZ materials,  (SI)*3. Moreover, including material absorption gives rise to a

nite value oA ,,, directly proportional to Im), which can
be very smaif

One has to be careful, however, in translating directly this
result to systems with a lower dimensionality. It is worth
noticing that the macroscopic QED forméfidhused above
provides a very convenient theoretical framework to evaluate
radiative transitions based on the imaginary part of the dyadic
Greers function. This compact formulation fails however to
provide a physical insight on howedént classes of NZI
media aect radiative transitions.

To address these issues, we introduce a simple adl uni
framework that allows us to clarify the nwadion of
fundamental radiative processes in NZI media of dimension
d. Our formulation is convenient, as it provides the necessary
physical insight to understand how radiative transitions are
a ected by the material parameters and number of dimensions
concomitantly. This is relevant since some metamaterial
implementations of NZI media often exhibit a reduced
dimensionalit}y5?° *°
Figure 2.Spectral energy densiy ) for air (brown), nondispersive We start by following the quantization procedure proposed
electric permittivity = 2.25 (purple), EMNZ metamaterial with a by Milonni*>*°® where the two-level system can be modeled
Lorentz model ( ) = () = 222 zj:;i and ,=01, =0  With the following Hamiltonian (see details inh§:
for the lossless ca3qyellow), ENZ material wit and =1 . .
(blue), MNZ materié:l(\)//vith( gand =2.25 (red).r'll('hg temperature H= E 2t @ & (Q g +hc)
is set toT = 300 K. K, k,

@)
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with , = (eS| ¥ lg ~ = le(d is the transition  n® ( )n( ). This scaling rule can be understood since the
frequency of the emitter, anglis the eigenfrequency of the sum over all modes is transformed into an integral. In general,
mode with wavevector The sums run over all optical modes the number of modes depletes as the refractive index goes to
of wavevectdk, polarization with unit polarization vector zero, and this behavior is observed to be independent of the
., and annihilation operatar. The coupling between the class of NZI medil( ) only depends on the refractive index,
emitter and optical modes is characterized by the couplifgld the depletion in the NZI limit is stronger for a larger

strength number of dimensions.
) A very dierent behavior is observed in terms of how
_e: | Z k strongly we couple to these modes. Syadlyi G( ) is
g9 =Si () V2 oV P& ®) de ned as the magnitude square of the ratio between the

coupling strength and its vacuum counterpart. Its scaling rule

The impact of the background medium and its dispersiowith respect to the background, givenZpy)/n{ ), is
properties in the lightnatter coupling are described by the independerdf the number of dimensions, but it critically
presence of the normalized wave impednge and the depends on the class of NZI media. This behavior can be
group indexng ) in eq 8 Vg4 is the d-dimensional intuitively understood by noting that the interaction
quantization volume. Hamiltonian is dened within the electric dipole approx-

Next, the relevant transition rates can be computed by usiigationH, = p-E, and, therefordg, I* is proportional to the
Fermis golden rul@ For instance, thé\,; coe cient electric eld intensity. Importantly, the background material
corresponding to the rate of spontaneous emission reducesnedi es the strength of the electrétd uctuations per unit

5 . of energy, thus modifying the strength of how the modes

Ay=2 g 1" (kS ) couple to the emitter. Since the classical energy per mode can

K ®) e written asl, =2 MEMRI(Z( J/ng ) (seeSFI, itis

This basic equation provides an often overlooked butlear that the electrield intensity per unit energy is medi
important physical insight. It conveys that the decay rate ofty the factoZ( )/ n( ) due to the material properties. In
guantum emitter depends on the number of available opticlis manner, wend that materials with a high or even
modes, , and how strongly it couples to thign{% both diverging normalized wave impedance, like ENZ media, will
factors must be taken into account in order to correctlyend to enhance radiative transitions compared to other classes
describe the physics. Thinking in terms of how the modes aoé NZI media.
asymptotically depleted in a system (e.g., because the refractivditimately, it is the product betweef ) and N( ) that
index goes to zero) would not provide the complete physicplovides the total decay rate. By combatsglCand11 we
picture if the coupling strength scales inversely proportionathptain the compact expression
in the zero-index limit. For this reason, it is in principle 451
possible for the spontaneous emission rate to converge to zeroAz1 = Z( JREN( ][ Ay (12)
in nity, or a nite value in the zero-index limit.

To further emphasize this point, we rewaife9 as the
product of two factoré,; = G( ) N( ), describing (i5( ),
how strongly the emitter couples to the optical modes as
function of the background, andl{) ), which describes the
number of available modes. These factors ameddas

By applying this general equation to therdnt NZI cases,
i.e.,at =  one can note that the inhibition of spontaneous
emission is not valid for all dimensions, even if the refractive
ifldex approaches zero. In fact, depending on the interplay
between the normalized wave impedance and refractive index,
one can observe either suppresset, or even divergent

follows: decay rates in the NZI limitgble landFigure b,c for the
2 1D and 2D cases).
G( ) = & = —Z( )
0 () Table 1. Purcell Factor at, for ENZ, MNZ, and EMNZ
k (10) Media in 1D, 2D, and 3D

N()=2 1P (S)
k,
d -

= Aﬁgmn( NSty )

0 (12)

with A, = 1/2, A, = 1/4, andAg = 1/(3 ), andd is the
vacuum limit o, . The Purcell factoh,,/ Ay, might also take a constant value
Understanding the explicit dependence on these two factd&D ENZ or 1D EMNZ media) or present a divergent
as a function of the material parameters and number bthavior (1D ENZ media), in accordance with previous
dimensions provides a comprehensive picture on lewendi  studies in dispersive ENZ wavegitdé$>° One might be
NZI media modify radiative processes. K¢st) is de ned tempted to justify this behavior as an example of Purcell
as the decay rate that would be observed if we could couplegmhancement in slow-light waveguidemwever, this
existing modes in the dispersive medium, but with the couplimgasoning fails to explain all NZI cases. For instance, 1D
strength for modes in vacuum. Consequetly) gives a MNZ is also a slow-light waveguide, with a near-zero group
good account of the modation of the number of modes velocity at the MNZ frequency, and yet at this point,
induced by the material parameters. In particular, itspontaneous emission is inhibited. We refgt section 4
dependence on the background is contained with the factfor a discussion on the validity of our theory to model realistic
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